Causal inference methods to assess safety upper bounds in randomized trials with noncompliance
نویسندگان
چکیده
BACKGROUND Premature discontinuation and other forms of noncompliance with treatment assignment can complicate causal inference of treatment effects in randomized trials. The intent-to-treat analysis gives unbiased estimates for causal effects of treatment assignment on outcome, but may understate potential benefit or harm of actual treatment. The corresponding upper confidence limit can also be underestimated. PURPOSE To compare estimates of the hazard ratio and upper bound of the two-sided 95% confidence interval from causal inference methods that account for noncompliance with those from the intent-to-treat analysis. METHODS We used simulations with parameters chosen to reflect cardiovascular safety trials of diabetes drugs, with a focus on upper bound estimates relative to 1.3, based on regulatory guidelines. A total of 1000 simulations were run under each parameter combination for a hypothetical trial of 10,000 total subjects randomly assigned to active treatment or control at 1:1 ratio. Noncompliance was considered in the form of treatment discontinuation and cross-over at specified proportions, with an assumed true hazard ratio of 0.9, 1, and 1.3, respectively. Various levels of risk associated with being a non-complier (independent of treatment status) were evaluated. Hazard ratio and upper bound estimates from causal survival analysis and intent-to-treat were obtained from each simulation and summarized under each parameter setting. RESULTS Causal analysis estimated the true hazard ratio with little bias in almost all settings examined. Intent-to-treat was unbiased only when the true hazard ratio = 1; otherwise it underestimated both benefit and harm. When upper bound estimates from intent-to-treat were ≥1.3, corresponding estimates from causal analysis were also ≥1.3 in almost 100% of the simulations, regardless of the true hazard ratio. When upper bound estimates from intent-to-treat were <1.3 and the true hazard ratio = 1, corresponding upper bound estimates from causal analysis were ≥1.3 in up to 66% of the simulations under some settings. LIMITATIONS Simulations cannot cover all scenarios for noncompliance in real randomized trials. CONCLUSION Causal survival analysis was superior to intent-to-treat in estimating the true hazard ratio with respect to bias in the presence of noncompliance. However, its large variance should be considered for safety upper bound exclusion especially when the true hazard ratio = 1. Our simulations provided a broad reference for practical considerations of bias-variance trade-off in dealing with noncompliance in cardiovascular safety trials of diabetes drugs. Further research is warranted for the development and application of causal inference methods in the evaluation of safety upper bounds.
منابع مشابه
Sharp bounds on the causal effects in randomized experiments with ‘‘truncation-by-death’’
Many randomized experiments suffer from the ‘‘truncation-by-death’’ problem where potential outcomes are not defined for some subpopulations. For example, in medical trials, quality-of-life measures are only defined for surviving patients. In this article, I derive the sharp bounds on causal effects under various assumptions. My identification analysis is based on the idea that the ‘‘truncation...
متن کاملBounds on Causal Effects in Three-Arm Trials with Non- compliance
This paper considers the analysis of three-arm randomized trials with noncompliance. In these trials, the average causal effects of treatments within principal strata of compliance behavior are of interest for better understanding the effect of the treatment. Unfortunately, even with usual assumptions, the average causal effects of treatments within principal strata are not point-identified. Ho...
متن کاملMultiple imputation methods for treatment noncompliance and nonresponse in randomized clinical trials.
Randomized clinical trials are a powerful tool for investigating causal treatment effects, but in human trials there are oftentimes problems of noncompliance which standard analyses, such as the intention-to-treat or as-treated analysis, either ignore or incorporate in such a way that the resulting estimand is no longer a causal effect. One alternative to these analyses is the complier average ...
متن کاملPerformance of statistical methods for analysing survival data in the presence of non-random compliance.
Noncompliance often complicates estimation of treatment efficacy from randomized trials. Under random noncompliance, per protocol analyses or even simple regression adjustments for noncompliance, could be adequate for causal inference, but special methods are needed when noncompliance is related to risk. For survival data, Robins and Tsiatis introduced the semi-parametric structural Causal Acce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2015